Global optimization of decision trees is a long-standing challenge in combinatorial optimization, yet such models play an important role in interpretable machine learning. Although the problem has been investigated for several decades, only recent advances in discrete optimization have enabled practical algorithms for solving optimal classification tree problems on real-world datasets. Mixed-integer programming (MIP) offers a high degree of modeling flexibility, and we therefore propose a MIP-based framework for learning optimal classification trees under nonlinear performance metrics, such as the F1-score, that explicitly addresses class imbalance. To improve scalability, we develop problem-specific acceleration techniques, including a tailored branch-and-cut algorithm, an instance-reduction scheme, and warm-start strategies. We evaluate the proposed approach on 50 benchmark datasets. The computational results show that the framework can efficiently optimize nonlinear metrics while achieving strong predictive performance and reduced solution times compared with existing methods.
Decision trees are widely used due to their interpretability and efficiency, but they struggle in regression tasks that require reliable extrapolation and well-calibrated uncertainty. Piecewise-constant leaf predictions are bounded by the training targets and often become overconfident under distribution shift. We propose a single-tree Bayesian model that extends VSPYCT by equipping each leaf with a GP predictor. Bayesian oblique splits provide uncertainty-aware partitioning of the input space, while GP leaves model local functional behaviour and enable principled extrapolation beyond the observed target range. We present an efficient inference and prediction scheme that combines posterior sampling of split parameters with \gls{gp} posterior predictions, and a gating mechanism that activates GP-based extrapolation when inputs fall outside the training support of a leaf. Experiments on benchmark regression tasks show improvements in the predictive performance compared to standard variational oblique trees, and substantial performance gains in extrapolation scenarios.
Large language models (LLMs) have shown strong capabilities across diverse decision-making tasks. However, existing approaches often overlook the specialization differences among available models, treating all LLMs as uniformly applicable regardless of task characteristics. This limits their ability to adapt to varying reasoning demands and task complexities. In this work, we propose Task-Aware LLM Council (TALC), a task-adaptive decision framework that integrates a council of LLMs with Monte Carlo Tree Search (MCTS) to enable dynamic expert selection and efficient multi-step planning. Each LLM is equipped with a structured success memory profile derived from prior task trajectories, enabling semantic matching between current reasoning context and past successes. At each decision point, TALC routes control to the most contextually appropriate model and estimates node value using a dual-signal mechanism that fuses model-based evaluations with historical utility scores. These signals are adaptively weighted based on intra-node variance and used to guide MCTS selection, allowing the system to balance exploration depth with planning confidence. Experiments on WebShop, HumanEval, and the Game of 24 demonstrate that TALC achieves superior task success rates and improved search efficiency compared to strong baselines, validating the benefits of specialization-aware routing and adaptive planning.
Effective clinical history taking is a foundational yet underexplored component of clinical reasoning. While large language models (LLMs) have shown promise on static benchmarks, they often fall short in dynamic, multi-turn diagnostic settings that require iterative questioning and hypothesis refinement. To address this gap, we propose \method{}, a note-driven framework that trains LLMs to conduct structured history taking and diagnosis by learning from widely available medical notes. Instead of relying on scarce and sensitive dialogue data, we convert real-world medical notes into high-quality doctor-patient dialogues using a decision tree-guided generation and refinement pipeline. We then propose a three-stage fine-tuning strategy combining supervised learning, simulated data augmentation, and preference learning. Furthermore, we propose a novel single-turn reasoning paradigm that reframes history taking as a sequence of single-turn reasoning problems. This design enhances interpretability and enables local supervision, dynamic adaptation, and greater sample efficiency. Experimental results show that our method substantially improves clinical reasoning, achieving gains of +16.9 F1 and +21.0 Top-1 diagnostic accuracy over GPT-4o. Our code and dataset can be found at https://github.com/zhentingsheng/Note2Chat.
Despite the ubiquity of tabular data in high-stakes domains, traditional deep learning architectures often struggle to match the performance of gradient-boosted decision trees while maintaining scientific interpretability. Standard neural networks typically treat features as independent entities, failing to exploit the inherent manifold structural dependencies that define tabular distributions. We propose Structural Compositional Function Networks (StructuralCFN), a novel architecture that imposes a Relation-Aware Inductive Bias via a differentiable structural prior. StructuralCFN explicitly models each feature as a mathematical composition of its counterparts through Differentiable Adaptive Gating, which automatically discovers the optimal activation physics (e.g., attention-style filtering vs. inhibitory polarity) for each relationship. Our framework enables Structured Knowledge Integration, allowing domain-specific relational priors to be injected directly into the architecture to guide discovery. We evaluate StructuralCFN across a rigorous 10-fold cross-validation suite on 18 benchmarks, demonstrating statistically significant improvements (p < 0.05) on scientific and clinical datasets (e.g., Blood Transfusion, Ozone, WDBC). Furthermore, StructuralCFN provides Intrinsic Symbolic Interpretability: it recovers the governing "laws" of the data manifold as human-readable mathematical expressions while maintaining a compact parameter footprint (300--2,500 parameters) that is over an order of magnitude (10x--20x) smaller than standard deep baselines.
Neighborhood search operators are critical to the performance of Multi-Objective Evolutionary Algorithms (MOEAs) and rely heavily on expert design. Although recent LLM-based Automated Heuristic Design (AHD) methods have made notable progress, they primarily optimize individual heuristics or components independently, lacking explicit exploration and exploitation of dynamic coupling relationships between multiple operators. In this paper, multi-operator optimization in MOEAs is formulated as a Markov decision process, enabling the improvement of interdependent operators through sequential decision-making. To address this, we propose the Evolution of Operator Combination (E2OC) framework for MOEAs, which achieves the co-evolution of design strategies and executable codes. E2OC employs Monte Carlo Tree Search to progressively search combinations of operator design strategies and adopts an operator rotation mechanism to identify effective operator configurations while supporting the integration of mainstream AHD methods as the underlying designer. Experimental results across AHD tasks with varying objectives and problem scales show that E2OC consistently outperforms state-of-the-art AHD and other multi-heuristic co-design frameworks, demonstrating strong generalization and sustained optimization capability.
Accurate fine-grained tree species classification is critical for forest inventory and biodiversity monitoring. Existing methods predominantly focus on designing complex architectures to fit local data distributions. However, they often overlook the long-tailed distributions and high inter-class similarity inherent in limited data, thereby struggling to distinguish between few-shot or confusing categories. In the process of knowledge dissemination in the human world, individuals will actively seek expert assistance to transcend the limitations of local thinking. Inspired by this, we introduce an external "Domain Expert" and propose an Expert Knowledge-Guided Classification Decision Calibration Network (EKDC-Net) to overcome these challenges. Our framework addresses two core issues: expert knowledge extraction and utilization. Specifically, we first develop a Local Prior Guided Knowledge Extraction Module (LPKEM). By leveraging Class Activation Map (CAM) analysis, LPKEM guides the domain expert to focus exclusively on discriminative features essential for classification. Subsequently, to effectively integrate this knowledge, we design an Uncertainty-Guided Decision Calibration Module (UDCM). This module dynamically corrects the local model's decisions by considering both overall category uncertainty and instance-level prediction uncertainty. Furthermore, we present a large-scale classification dataset covering 102 tree species, named CU-Tree102 to address the issue of scarce diversity in current benchmarks. Experiments on three benchmark datasets demonstrate that our approach achieves state-of-the-art performance. Crucially, as a lightweight plug-and-play module, EKDC-Net improves backbone accuracy by 6.42% and precision by 11.46% using only 0.08M additional learnable parameters. The dataset, code, and pre-trained models are available at https://github.com/WHU-USI3DV/TreeCLS.
Artificial intelligence has reshaped medical imaging, yet the use of AI on clinical data for prospective decision support remains limited. We study pre-operative prediction of clinically meaningful improvement in chronic rhinosinusitis (CRS), defining success as a more than 8.9-point reduction in SNOT-22 at 6 months (MCID). In a prospectively collected cohort where all patients underwent surgery, we ask whether models using only pre-operative clinical data could have identified those who would have poor outcomes, i.e. those who should have avoided surgery. We benchmark supervised ML (logistic regression, tree ensembles, and an in-house MLP) against generative AI (ChatGPT, Claude, Gemini, Perplexity), giving each the same structured inputs and constraining outputs to binary recommendations with confidence. Our best ML model (MLP) achieves 85 % accuracy with superior calibration and decision-curve net benefit. GenAI models underperform on discrimination and calibration across zero-shot setting. Notably, GenAI justifications align with clinician heuristics and the MLP's feature importance, repeatedly highlighting baseline SNOT-22, CT/endoscopy severity, polyp phenotype, and physchology/pain comorbidities. We provide a reproducible tabular-to-GenAI evaluation protocol and subgroup analyses. Findings support an ML-first, GenAI- augmented workflow: deploy calibrated ML for primary triage of surgical candidacy, with GenAI as an explainer to enhance transparency and shared decision-making.
Artificial intelligence has reshaped medical imaging, yet the use of AI on clinical data for prospective decision support remains limited. We study pre-operative prediction of clinically meaningful improvement in chronic rhinosinusitis (CRS), defining success as a more than 8.9-point reduction in SNOT-22 at 6 months (MCID). In a prospectively collected cohort where all patients underwent surgery, we ask whether models using only pre-operative clinical data could have identified those who would have poor outcomes, i.e. those who should have avoided surgery. We benchmark supervised ML (logistic regression, tree ensembles, and an in-house MLP) against generative AI (ChatGPT, Claude, Gemini, Perplexity), giving each the same structured inputs and constraining outputs to binary recommendations with confidence. Our best ML model (MLP) achieves 85 % accuracy with superior calibration and decision-curve net benefit. GenAI models underperform on discrimination and calibration across zero-shot setting. Notably, GenAI justifications align with clinician heuristics and the MLP's feature importance, repeatedly highlighting baseline SNOT-22, CT/endoscopy severity, polyp phenotype, and physchology/pain comorbidities. We provide a reproducible tabular-to-GenAI evaluation protocol and subgroup analyses. Findings support an ML-first, GenAI- augmented workflow: deploy calibrated ML for primary triage of surgical candidacy, with GenAI as an explainer to enhance transparency and shared decision-making.
Simulated environments play an essential role in embodied AI, functionally analogous to test cases in software engineering. However, existing environment generation methods often emphasize visual realism (e.g., object diversity and layout coherence), overlooking a crucial aspect: logical diversity from the testing perspective. This limits the comprehensive evaluation of agent adaptability and planning robustness in distinct simulated environments. To bridge this gap, we propose LogicEnvGen, a novel method driven by Large Language Models (LLMs) that adopts a top-down paradigm to generate logically diverse simulated environments as test cases for agents. Given an agent task, LogicEnvGen first analyzes its execution logic to construct decision-tree-structured behavior plans and then synthesizes a set of logical trajectories. Subsequently, it adopts a heuristic algorithm to refine the trajectory set, reducing redundant simulation. For each logical trajectory, which represents a potential task situation, LogicEnvGen correspondingly instantiates a concrete environment. Notably, it employs constraint solving for physical plausibility. Furthermore, we introduce LogicEnvEval, a novel benchmark comprising four quantitative metrics for environment evaluation. Experimental results verify the lack of logical diversity in baselines and demonstrate that LogicEnvGen achieves 1.04-2.61x greater diversity, significantly improving the performance in revealing agent faults by 4.00%-68.00%.